When patients don’t have enough bone to support a dental implant, a bone graft may be necessary. The success of bone grafting depends on the ability of the donor bone to bring in host cells to the site graft and convert them into cells that will form bone. If the bone cannot recruit host cells or facilitate their conversion to bone cells, the graft is usually a failure. The osteogenic, osteoinductive, and osteoconductive capabilities of the donor bone dictate a large part of how successful the graft will be. Demineralized bone matrix (DBM) is a type of allograft bone that has been processed to remove inorganic minerals, leaving only the organic bone matrix behind. The demineralization process increases the bioavailability of allograft donor bone, making it a superior material to demineralized bone grafts. Demineralized bone matrix (DBM) was discovered in 1965 by Marshall Urist, a U.S. orthopedic surgeon practicing in Los Angeles, California.